Standard Free Energy of Formation of YFeO₃, Y₃Fe₅O₁₂, and a New Compound YFe₂O₄ in the Fe-Fe₂O₃-Y₂O₃ System at 1200°C

NOBORU KIMIZUKA

National Institute for Researches in Inorganic Materials, Sakuramura, Niiharigun, Ibaragi, Japan 300-31

TAKASHI KATSURA

Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan 152

Received April 14, 1974

The phase equilibria in the Fe-Fe₂O₃-Y₂O₃ system have been established at 1200°C. The following phases were stable: yttria, hematite, magnetite, wüstite, metallic iron, yttrium-iron perovskite, yttrium-iron garnet, and a new phase YFe₂O₄, belonging to a rhombohedral crystal system. The YFe₂O₄ compound has a solid solution from YFe₂O_{3.905} to YFe₂O_{4.000}. The standard free energies of formation of YFe₂O_{3.905}, YFeO₃, and Y₃Fe₅O₁₂ have been determined to be -96 800 \pm 200 cal, -59 800 \pm 200 cal, and -143 700 \pm 600 cal, respectively, from metallic iron, Y₂O₃, and oxygen.

Introduction

Many works on rare earth elements-transition elements-oxygen systems have been investigated from the standpoint of crystallographic and magnetic properties. These have especially focused their attentions on the perovskite and garnet structures found in these systems. However, very few studies have been published on the thermochemical aspect in order to determine the standard free energies of formation of these complex oxides. Recently, Kimizuka and Katsura (1) determined the standard free energy of formation of LaFeO₃ from metallic iron, La₂O₃, and oxygen after establishing the phase equilibria in the Fe-Fe₂O₃-La₂O₃ system.

Van Hook (2) studied the equilibria in the Fe_2O_3 - $FeO-Y_2O_3$ system at elevated temperatures under varying oxygen partial pressure from oxygen to carbon dioxide, but he did not determine the phase relations in the $Fe-Fe_2O_3-Y_2O_3$ system.

In the present study, we have established the phase equilibria in the Fe-Fe₂O₃-Y₂O₃ system

at 1200° C under varying oxygen partial pressure from 1 to $10^{-15.80}$ atm, and found a new compound YFe₂O₄. Based on the phase equilibria, we have determined the standard free energies of formation of YFeO₃, YFe₂O₄, and Y₃Fe₅O₁₂ from metallic iron, Y₂O₃, and oxygen.

Experimental

1. Materials

Guaranteed reagent grade Fe_2O_3 and Y_2O_3 (99.99%) powders were employed for all starting materials. Desired ratios of Y_2O_3/Fe_2O_3 were obtained by mixing them in an agate mortar under ethyl alcohol. Mixtures thus obtained were heated at 1200°C for 72 hr in air. Sintered samples were pulverized in an agate mortar and heated again at 1200°C for 72 hr in air. Loosely sintered samples thus obtained, were crushed to obtain small size pieces ($3 \times 3 \times 3$ mm³).

2. Apparatus and Procedures

About 3 g of sintered pieces having a desired

ratio of Y₂O₃/Fe₂O₃ were put into a small alumina crucible which has slit-cuts on the wall in order to facilitate equilibration between gas and solid phases. The crucible was then suspended in a vertical furnace wound with 40% Rh60%Pt wire kept at 1200°C and at a desired oxygen partial pressure. Subsequent thermogravimetric procedures were the same as those described in a previous paper (3). The weight of sample in oxygen was chosen as the reference, because the weight loss due to the reduction of the Fe₂O₃ component was insignificant over all mixtures.

The thermocouple, Pt-13%Rh87%Pt, was calibrated against the melting point of gold, and the fluctuation of temperature was within $\pm 2^{\circ}$ C. The oxygen partial pressure was measured by means of a solid electrolyte cell composed of $(ZrO_2)_{0.85}$ $(CaO)_{0.15}$. The difference between measured and calculated oxygen partial pressures was within ± 0.01 in terms of $\log P_{o_2}$ in the range from 1 to $10^{-15.80}$ atm. The procedure to measure the

oxygen partial pressure has been described in a previous paper (4). The equilibrium among condensed and gaseous phases was certified by oxidation and reduction reactions.

Phases in quenched samples were identified by the powder X-ray diffraction method with Mn-filtered Fe $K\alpha$ radiation.

3. Chemical Analysis

In addition to the analysis by the thermogravimetric method, the FeO/Fe₂O₃ ratios in several quenched samples were determined by the wet chemical method described by Iwasaki *et al.* (5).

Results and Discussion

1. Phase Equilibria

Figure 1 shows the phase equilibria in the Fe-Fe₂O₃-Y₂O₃ system at 1200°C. The following phases were stable in the present experimental conditions: Yttria (Y₂O₃), hematite (Fe₂O₃), magnetite (Fe₃O₄), wüstite (FeO),

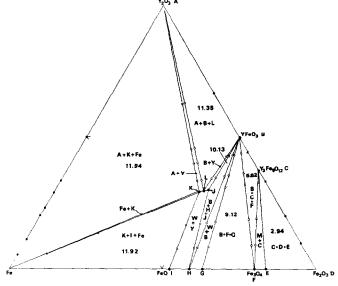


Fig. 1. The phase diagram of the Fe-Fe₂O₃-Y₂O₃ system at 1200° C (mole%). Numbers mean values of $-\log P_{o_2}$ in fields equilibrated with three solid phases. Letters A, B, C, D, F, and J represent stoichiometric compositions of Y₂O₃, Y₅Fe₂O₁₂, Fe₂O₃, Fe₃O₄, and YFe₂O₄ phases, respectively. M means the magnetite solid solution from E to F, W means the partial solid solution of wüstite from G to G, where G is a solution of Wistite from G to G is a partial solid solution of YFe₂O₄ from G to G is a partial solid solution of YFe₂O₄ from G to G is a solution of YFe₂O₄ from G to G is a solution of Cach letter is as follows: G is G is G is G in G is G in G in G is G in G

metallic iron (γ-iron), yttrium-iron perovskite $(YFeO_3)$, yttrium-iron garnet $(Y_3Fe_5O_{12})$, and a new phase (YFe₂O₄). Each phase containing the Y₂O₃ component has the following characteristics. (a) Pure yttrium oxide was stable in the range of P_{o_2} from 1 to 10^{-16} atm. Cassedanne (6) reported the Y_2O_3 -Fe₂O₃ solid solution at temperatures from 800 to 1600°C in air. In the present study, however, it was hard to recognize the existence of the Y₂O₃-iron oxide solid solution at oxygen partial pressures below $10^{-11.35}$ atm. (b) It was ascertained that the yttrium-iron perovskite phase, YFeO₃, may have no significant deviation from the stoichiometric composition, on the basis that the lattice constants of yttriumiron perovskite equilibrated with Y₂O₃, with Y₃Fe₅O₁₂, and with YFe₂O₄ are identical within experimental error. (c) Yttrium-iron garnet had an insignificant solubility of Y₂O₃ and of Fe₂O₃, respectively, though Van Hook (2) pointed out that the garnet phase in equilibrium with oxide liquid deviates from the ideal formula composition Y₃FeO₁₂ with changes in temperature and in oxygen partial pressure. Stoichiometric yttrium-iron garnet decomposed to form stoichiometric yttriumiron perovskite and stoichiometric magnetite at an oxygen partial pressure of $10^{-5.82}$ atm. (d) As seen in Fig. 1, the solid solution of the new phase ranged from YFe₂O_{3,905} to YFe₂O_{4.000}. After quenching the composition of YFe₂O₄ obtained by the thermogravimetric method at an oxygen partial pressure of 10^{-10.14} atm, ferrous and ferric irons were analyzed by the wet chemical method. The result showed an identical composition, $Y_{1.004}Fe_{2.002}O_{4.000}$ (based on 4 O) with that obtained by thermogravimetry. The YFe₂O₄ solid solution is black and dissolves easily in aqueous acid solutions. It is not attracted by a hand magnet at room temperature. This solid solution decomposes to form wüstite and vttrium-iron perovskite under high pressure of 50 kbar at temperatures from 900 to 1100°C (Professor S. Akimoto, University of Tokyo, kindly studied this by using the tetrahedral anvil type high pressure apparatus). The X-ray powder diffraction data of the composition YFe₂O₄ are given in Table I. In the present experiment, we found that a series of a AFe₂O₄

TABLE I

SPACINGS AND INDICES OF THE YFe₂O₄ CRYSTAL^a

No.	Indices	Observed spacings (Å)	Observed intensities	Calculated spacings (Å)
1	003	8.248	20	8.263
2	006	4.128	30	4.131
3	211	3.0199	100	3.0223
4	112	2.9538	10	2.9571
5	009	2.7525	50	2.7543
6	214	2.7334	80	2.7329
7	125	2.5930	90	2.5947
8	218	2.1717	20	2.1718
9	2 1 10	1,9223	40	1.9224
10	300	1.7580	60	1.7581
11	306	1.6171	20	1.6177
12	21 14	1.5307	10	1.5306
13	4 2 1	1.5199	10	1.5197
14	309	1.4820	30	1.4819
15	425	1.4554	10	1.4554
16	4210	1.2976	10	1.2973

^a Space group: R3m, $R\overline{3}$, or R32; extinction law: -h+k+1=3n. $a=6.090\pm0.004$ Å; $c=24.788\pm0.004$ Å as a hexagonal crystal system.

type of compounds where A includes Ho³⁺, Er³⁺, Yb³⁺, Tm³⁺, and Lu³⁺ were synthesized similarly under lower oxygen partial pressures at 1200°C (7). These compounds all have the same X-ray powder diffraction patterns. Of these compounds, a plate-like single crystal of YbFe₂O₄ has been successfully grown from melt at 1400°C, and we could obtain Precession and Weissenberg photographs. On the basis of these photographs, we could determine the space group and the lattice parameters of YFe₂O₄ as given in Table I. The detailed results of the crystal structure analysis of AFe₂O₄ will be published elsewhere in the near future.

Figures 2a, b, and c show the relationship between the weight-change of starting mixtures and the oxygen partial pressure in order to determine the boundary lines of each assembly. As clearly seen, the new phase YFe₂O₄ is in equilibrium with the Y₂O₃ phase as a distinctive step (2) in Fig. 2a, and is in equilibrium with the YFeO₃ phase as a step (4) and with the Y₂O₃ phase as a step (5) both in

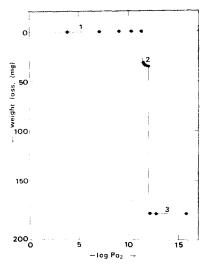


Fig. 2 (all parts). The relationship between weight loss and log P_{02} . a. Starting conditions, $Y_2O_3/Fe_2O_3 = 2/1$, sample weight 2 207.0 mg. The equilibrated solid phases in each step are as follows: 1. $Y_2O_3 + YFeO_3$, 2. $Y_2O_3 +$ partial solid solution of YFe_2O_4 from L to K, 3. $Y_2O_3 +$ metallic iron.

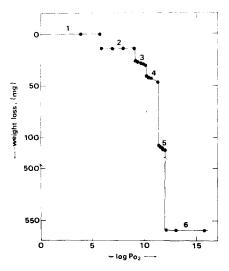


Fig. 2b. Starting conditions, $Y_2O_3/Fe_2O_3 = 4/5$, sample weight 3986.7 mg. The equilibrated solid phases in each step are as follows; 1. $YFeO_3 + Y_3Fe_5O_{12}$, 2. $YFeO_3 + Fe_3O_4$, 3. $YFeO_3 + partial$ solid solution of wüstite from G to H, 4. $YFeO_3 + partial$ solid solution of YFe_2O_4 from H to H, and 6. $Y_2O_3 + Petallic$ iron.

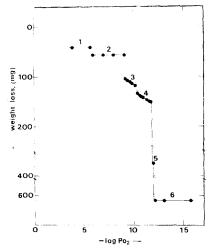


Fig. 2c. Starting conditions, $Y_2O_3/Fe_2O_3 = 1/4$, sample weight 2759.5 mg. The equilibrated solid phases in each step are as follows: 1. $Y_3Fe_5O_{12} + Fe_3O_4$, 2. $YFeO_3 + Fe_3O_4$, 3. $YFeO_3 + partial$ solid solution of wüstite from G to H, 4. solid solution of YFe_2O_4 from G to G

Fig. 2b, and also is in equilibrium with wüstite as a step (4) in Fig. 2c. The composition YFe₂O_{3.905} [point (K) in Fig. 1] is in equilibrium with metallic iron in the range of oxygen partial pressures only from $10^{-11.92}$ to $10^{-11.94}$ atm as pointed out in Fig. 2c.

2. Calculations of the Standard Free Energy of Formation of YFe₂O₄, YFeO₃, and Y₃Fe₅O₁₂

On the basis of the present phase equilibria, we will determine the following three standard free energies of formation from metallic iron, Y_2O_3 , and oxygen:

$$2 \operatorname{Fe} + \frac{1}{2} \operatorname{Y}_{2} \operatorname{O}_{3} + \left[(5 - 2x_{o})/4 \right] \operatorname{O}_{2}$$

$$= \operatorname{YFe}_{2} \operatorname{O}_{4-x_{o}} \tag{1}$$

$$Fe + 1/2 Y_2O_3 + 3/4 O_2 = YFeO_3$$
 (2)

$$5Fe + 3/2 Y_2 O_3 + 15/4 O_2 = Y_3 Fe_5 O_{12}$$
. (3)

In Eq. (1), YFe₂O_{4-x_o} was in equilibrium with metallic iron and Y₂O₃, and the value of x_o was determined to be 0.095. In the present paper, we choose this composition as the standard of the activity of YFe₂O₄. The standard free energy of formation, $\Delta G^o(I)$, referred to

Eq. (1) was thus calculated to be $-96\,800 \pm 200$ cal, because the equilibrated oxygen partial pressure was $10^{-11.94}$ atm. Based on $\Delta G^o(I)$, we obtain the following equation involving activities of both metallic iron and YFe₂O_{4-x}:

$$\Delta G^{o}(1) = -2.303RT[\log a_{YFe_{2}O_{4-x_{0}}} - 2\log a_{Fe} - (5 - 2x_{o})/4\log P_{o_{o}}], \tag{4}$$

where R, T, and a_i mean gas constant, absolute temperature, and the activity of each component, respectively. Equation (3) is applicable when the YFe₂O₄ solid solution is in equilibrium with pure Y₂O₃.

In order to determine the activity of YFe₂O_{4- x_0} at the point (L) in Fig. 1 where the YFe₂O₄ solid solution is in equilibrium with both Y₂O₃ and YFeO₃, we will apply the following reaction between YFe₂O_{4- x_0} and oxygen:

$$YFe_2O_{4-x_0} + [(x_0 - x)/2] = YFe_2O_{4-x},$$
 (5)

where x means any value from x_0 to the point (L) in Fig. 1. The value of x at the point (L) was determined experimentally to be 0.056. Applying Gibbs-Duhem equation to Eq. (5), we may calculate the activity of YFe₂O_{4-x₀} at the point (L) as follows:

the point (L) as follows:

$$\log a_{\text{YFe}_2\text{O}_{4-x_o}}(L) = \frac{\log_{P\text{O}_2}(L)}{-1/2} \int_{\log_2P\text{O}_2(K)} (x_o - x) d\log_{P\text{O}_2}(6)$$
where $\log_{P\text{O}_2}(K)$ and $\log_{P\text{O}_2}(L)$ were determined to be -11.94 and -11.35 , respectively.

mined to be -11.94 and -11.35, respectively. Since the relationship between $(x_o - x)$ and $\log P_{o_2}$ in the solid solution from (K) to (J)was substantially linear within the present experimental errors, the integration was readily obtained. The value of log $a_{YFe_2O_{4-}}$ at the point (L) was calculated to be -0.007. Substituting this value into Eq. (4), we obtain the value -0.358 as an activity of metallic iron in the solid solution (L). By using this activity of metallic iron, we may calculate the standard free energy of formation of YFeO₃, $\Delta G^{o}(2)$, referred to Eq. (2), because the activity of Y₂O₃ is unity. The value thus obtained, $-59800 \pm$ 200 cal, is smaller than that of LaFeO₃, -68700 ± 200 cal, determined by the present authors (1).

Since stoichiometric $Y_3Fe_5O_{12}$ was in equilibrium with both stoichiometric YFeO₃ and Fe₃O₄ at an oxygen partial pressure of $10^{-5.82}$ atm as seen in Fig. 1, the standard free energy change, $\Delta G^o(7)$, referred to the following Eq. (7) may be obtained to be -6500 ± 600 cal,

$$3 \text{ YFeO}_3 + 2/3 \text{ Fe}_3 \text{O}_4 + 1/6 \text{ O}_2 = \text{Y}_3 \text{Fe}_5 \text{O}_{12}.$$
 (7)

According to Darken and Gurry (8), the activity of metallic iron in stoichiometric Fe₃O₄ which is in equilibrium with wüstite is $10^{-1.545}$, and the oxygen partial pressure at which stoichiometric Fe₃O₄ is in equilibrium with wüstite is $10^{-9.14}$ atm at 2100° C. Thus, the standard free energy of formation of Fe₃O₄, $\Delta G^{o}(8)$, referred to the following equation is calculated to be -154500 ± 300 cal at 1200° C,

$$3 \text{ Fe} + 2 \text{ O}_2 = \text{Fe}_3 \text{O}_4.$$
 (8)

Adding $\Delta G^o(7) + 2/3$ $\Delta G^o(8) + 3$ $\Delta G^o(2)$, we obtain the standard free energy of formation of Y₃Fe₅O₁₂, $\Delta G^o(3)$, referred to Eq. (3) to be $-288\,900\pm600\,$ cal. Numerical values described above are summarized in Table II.

In addition, we may calculate the standard free energy of reaction, $\Delta G^{o}(9)$, referred to the following equation:

$$YFe_2O_{4-x_0} + x_0/2O_2 = FeO + YFeO_3,$$
 (9)

where the YFe₂O₄ phase was in equilibrium with both wüstite and YFeO₃ as seen in Fig. 1. In the present experiments, we determined the activity of FeO at the point (H) in Fig. 1 to be $10^{-0.070}$ on the basis of the following stoichiometric reaction

$$Fe + 1/2 O_2 = FeO.$$
 (10)

This value is identical with that obtained by Darken and Gurry (8), $10^{-0.0703}$. The activity of YFe₂O_{4-x_o} is calculated by adopting Eq. (6), and we obtain the value $10^{-0.0430}$ for the point (*J*) in Fig. 1. Since the activity of YFeO₃ and the equilibrated oxygen partial pressure were 1 and $10^{-10.13}$ atm, respectively, $\Delta G^o(9)$, referred to Eq. (9) is calculated to be -3100 cal. By summing up $\Delta G^o(1) + \Delta G^o(9) - \Delta G^o(10)$, we obtain -59 700 cal which should be identical with $\Delta G^o(2)$, -59 800 cal.

TABLE II The Standard Free Energies of Formation of YFe₂O_{4-x₀}, YFeO₃, and Y₃Fe₅O₁₂ at 1200°C

Equation	$-\text{Log}P_{02}$	ΔG^o (cal)	-Log a _t other than unity
(1) $2 \operatorname{Fe} + 1/2 \operatorname{Y}_2 \operatorname{O}_3 + [(5 - 2x_o)/4] \operatorname{O}_2 = \operatorname{YFe}_2 \operatorname{O}_{4 - x_o}$ $(x_o = 0.095)$	11.94	-96800 ± 200	
(2) $Fe + 1/2 Y_2O_3 + 3/4 O_2 = YFeO_3$	11.35	-59800 ± 200	Fe: 0.358
(3) $5 \operatorname{Fe} + 2/3 \operatorname{Y}_2 \operatorname{O}_3 + 15/4 \operatorname{O}_2 = \operatorname{Y}_3 \operatorname{Fe}_5 \operatorname{O}_{12}$ $[\Delta G^{\circ}(7) + 2/3 \Delta G^{\circ}(8) + 3 \Delta G^{\circ}(2)]$		$-288\ 900\pm600$	
(7) $3 \text{ YFeO}_3 + 2/3 \text{ Fe}_3 \text{O}_4 + 1/6 \text{ O}_2 = \text{Y}_3 \text{Fe}_5 \text{O}_{12}$	5.82	-6500 ± 600	
(8) $3 \text{ Fe} + 2 \text{ O}_2 = \text{Fe}_3 \text{O}_4$	9.14	-154500 ± 300	Fe: 1.545
(9) $YFe_2O_{4-x_0} + x_0/2O_2 = FeO + YFeO_3$ ($x_0 = 0.095$)	10.13	-3100 ± 200	FeO: 0.070 YFe ₂ O _{4-xo} : 0.0430
(10) $Fe + 1/2 O_2 = FeO$	11.92	$-40\ 200\pm200$	*0

Acknowledgments

We are deeply indebted to Prof. S. Akimoto, The University of Tokyo, and to Professor Y. Sasada and Dr. A. Takenaka, Tokyo Institute of Technology, who kindly helped us to take the Precession and the Weissenberg photographs. One of the present authors (NK) expresses his thanks to Dr. M. Nakahira, National Institute for Researches in Inorganic Materials.

References

 N. KIMIZUKA AND T. KATSURA, Bull. Chem. Soc. Japan 47, 1796 (1974).

- VAN HOOK, J. Amer. Ceram. Soc. 44, 208 (1961);
 45, 162 (1962).
- T. KATSURA AND A. MUAN, Trans. AIME 230, 77 (1964).
- 4. T. KATSURA AND M. HASEGAWA, Bull. Chem. Soc. Japan 40, 561 (1967).
- I. IWASAKI, T. KATSURA, M. YOSHIDA, AND T. TARUTANI, Japan Analyst 6, 211 (1957).
- 6. J. Cassedanne, Compt. Rend. 252, 3261 (1961).
- N. KIMIZUKA, A. TAKENAKA, Y. SASADA, AND T. KATSURA, 15, 1321 (1974).
- L. S. DARKEN AND G. W. GURRY, J. Amer. Chem. Soc. 67, 1398 (1945).